220kV Power Transformer

DuPont NOMEX Paper Insulation System Low Loss Low Noise Reliability www.ceegtransformer.com

Address: 3F4F, CITIC Investment Building, Yuhuatai District, Nanjing City, Jiangsu Province, China Whatsapp: +86 18061639839 WeChat: +86 18061639839 E-mail: info@ceegtransformer.com Website: www.ceegtransformer.com www.ceegelectric.com

All data on this catalogue printed by CEEG are used for illuminating the relative information of this series products. CEEG have any right to do any improving for it whenever the technology should be upgraded or the production craftwork should be renewed possibly, or do some necessary correction because of the literal error and inaccurate information of this manual without any prior notice. When you make your orders, please keep in touch with relative personnel in order to confirm if your information is right. \angle

Delivering premium power to the world

DuPont* Nomex* Chem Decret Gapperer (Jacque) Transformer Meenterbare Cr. Let 6. autoenteel by Durber to use the meleman of Duffert Carponiate and in antimate

CONTENT

chemical, aviation, transportation, railway and other industries to provide world-class power transmission and distribution products and services.

In recent years, CEEG has participated in many national key projects, such as Beijing Olympic project, Nanjing South Railway Station, Shenyang National Games, Nanjing Youth Olympic Games, Shanghai World Expo project, manned space project, Beijing South Railway Station, Shanghai Yangtze River Tunnel and bridge, Shenzhen Ling'ao nuclear power project, etc. its products are exported to Europe, Australia, Southeast Asia, Middle East, Africa and other parts of the world.

Oil transformers mainly include: ordinary insulation system transformer and high temperature resistance insulation system transformer. The product voltage covers 10kV-220kV, and the product series covers distribution transformer, 110-220kV power transformer, 110-220kV electrified railway traction transformer, electrified railway AT power supply autotransformer, rectifier transformer, wind power transformer, photo-voltaic transformer, test transformer, amorphous alloy transformer, etc.

Company I	Introduction	0
-----------	--------------	---

Performance Characteristics 02

- Temperature Control Technology 03
 - Model Description 04

Technical Advantages 05

Technical Parameter 08

Since its establishment, CEEG has always been adhering to the core values of "vision, innovation, responsibility", and has exported high-quality power to the world. With a focus of 30 years on manufacturing and has formed three pillar industries of power transformers, new energy, and system solutions.

Located in Yangzhong City, Jiangsu Province, China Electric Equipment (Jiangsu) Transformer Manufacture Co.,Ltd is a national high-tech enterprise under China Electric Equipment Group (CEEG), integrating R&D, production, sales and service, specializing in the production of power transmission and distribution equipment.

The company's main products include SG10 open ventilated dry type transformer, SC cast resin dry type transformer, S13 oil immersed transformer, 220kV traction transformer and power transformer, 110kV power transformer, mine explosion-proof transformer, mine explosion-proof switch, high and low voltage switch cabinet, frequency converter, amorphous alloy transformer, substation, wind power transformer, marine transformer, etc. It is committed to providing power, electronics, hydropower, nuclear power, wind power, coal mine , communications, construction, petroleum,

COMPANY INTRODUCTION

Performance Characteristics

Flexible design to meet the needs of different users

First-class product quality in China

The first-class R & D team in the industry ensures that the performance indicators of products meet or exceed the national standards, introduces scientific management mode, and standardizes the operation of each process to ensure the excellent quality of each product.

Flexible design to meet the needs of different users

According to the actual needs of customers, the product structure can be designed flexibly, and all kinds of accessories can be selected according to the requirements of users, so as to meet the personalized needs of different customers.

Y Safe, no partial discharge, high efficiency and energy saving

1. Seven-stage temperature control technology

2. Low loss: adopt a special design scheme, the no-load loss is 20% lower than the national standard, load loss is 5% lower than the national standard.

- 3. Low noise: the noise is 3-5 dB lower than the national standard
- 4. No partial discharge: factory test is less than 40pc

5. Anti short circuit: pass the sudden short circuit test of the national transformer testing center.

Scope of application: widely used in large and medium-sized city power grid and large thermal power plants, industrial and mining enterprises.

Seven-stage Temperature Control Technology

The structure of high temperature liquid immersed transformer adopts the mature structure and technology of traditional transformer as far as possible, which retains the advantages of reliability, good processability and economy. The biggest difference between this kind of transformer and the traditional transformer is that the actual situation of the temperature field in the transformer is reasonably considered in the design, and the insulation materials with different temperature resistance grades are reasonably used according to the temperature distribution to form a hybrid insulation system. With the help of transformer temperature field simulation technology, the temperature distribution of transformer (mainly winding and its nearby) can be determined more accurately. According to different temperature range, different grades of insulation materials are selected to give full play to the high temperature resistance of materials, and at the same time, it has good economy. The actual maximum oil temperature of the liquid immersed transformer is set at 95 °C, which ensures that the transformer has good safety, thermal performance margin and long life expectancy. For the temperature design of the whole transformer, we put forward and implement the concept of "seven-stage temperature control technology" as the design principle, that is, from the highest temperature winding hot spot to the external low temperature area, we gradually divide it into five levels, and consider the short circuit and overload conditions to form a seven level thermal state to control the temperature:

Insulation temperature control technology: different insulation materials are selected for winding and active part according to the temperature of different parts. Control winding hot spot temperature.
 Temperature control technology of liquid flow circuit: it is a technology to determine and control the temperature of liquid flow in various parts by comprehensively considering the relationship between liquid flow field and temperature field. Control the liquid temperature of boundary layer and top layer near the hot spot of winding.
 Overload temperature control technology: temperature rise control of various parts of transformer under overload condition. The temperature distribution under overload condition is different from that under rated load, so the temperature rise under overload condition should be paid attention to during design procedure.
 Iron core temperature control technology: temperature control of insulating parts in contact with iron core.
 Sealed temperature control technology: the influence and control with temperature change of thermal expansion, deformation, strength of fully sealed oil tank, so as to ensure normal operation of transformer within its allowable temperature range.

6. Component temperature control technology: corresponding level of insulation materials are selceted for components according to the temperature of the location. such as gasket.
7. Short circuit temperature control technology: when the transformer is in short circuit, the value of short circuit current flowing through the winding is very large, but the time is short. Generally, it is calculated according to the insulation process. Heat accumulation and heat dissipation effect should be considered in the condition of multiple short circuit reclosing. Generally speaking, because Nomex ® paper has good high temperature resistance, mechanical strength, dielectric coefficient and dielectric loss with the temperature change very little even in the state of multiple short circuit reclosing, it will not cause mechanical damage and electrical failure due to temperature rise, and also will not lose the life of insulation materials.

Temperature Control Technology

Model Description

O S F P S Z 11 - 🗆 / 🗆

DuPont Nomex Insulation System

World recognized Chemical - there i stability Heat resistance: lo term operation at 3 support combustic at 750 °C Safety, environmer and animals; he si

As the main drafter of GB/Z1094.14-2011 "power transformers Part 14: design and application of liquid immersed transformers with high temperature insulating materials", CEEG has successfully developed a series of products with high overload, high reliability, high safety and long life based on the Nomex insulation system of DuPont and the seven level temperature control technology of core. Each performance has reached the industry leading and advanced level.

Technical Advantages

World recognized high quality electrical insulating materials Chemical - there is no weak C-H bond, with good chemical

Heat resistance: long term stable operation at 220 °C; Short term operation at 350 °C; At 250 °C, it will not melt, flow and support combustion; No toxic or corrosive gas will be released

Safety, environmental protection - no toxic reaction to people and animals; he smoke concentration is low and no harmful gas is produced during burning.

Technical Advantages

R & D Team

CEEG has established a strong technology R & D team, it has post doctoral workstation, Jiangsu Electric Power Transformation Equipment Engineering Technology Research Center, Jiangsu graduate workstation, Jiangsu technology center and other technology R & D platforms, it is also in cooperation with the Institute of Electrical Engineering of Chinese Academy of Sciences, Southeast University, Nanjing University of Aeronautics and Astronautics, Jiangsu University, Jiangsu University, Jiangsu University, etc China University of mining and technology and other well-known scientific research institutions and universities jointly to carry out a series of technology research and development and innovation.

Cloud R&D Platform

It integrates the functions of transformer electromagnetic optimization design, parametric drawing, performance analysis and structure optimization, automatic drawing, etc. to realize the sharing of transformer design resources, search, modification and version control of various data information, etc.

Smart operation and maintenance platform

By collecting the key data of temperature, current, voltage, vibration and harmonic of power grid, online power quality analysis and fault alarm can be realized, and can be installed on the mobile terminal.

Key equipments and process layout of transformer

Transformer Test Station Invest 50 million yuan to build a first-class high-voltage test hall in the industry.

Transformer workshop

Technical Advantages

S11-220kV 31500kVA-240000kVA three phase three winding non excitation voltage regulating autotransformer

Rated		ge combin apping rar		Vector	Step up	Combina	ation	Step dow	n Combir	nation	Impedar	nce(%)		
Capacity (kVA)	HV (kV)	MV (kV)	LV (kV)		No load Loss (KW)	Load Loss (KW)	No load Current (%)	No load Loss (KW)	Load Loss (KW)	No load Current (%)	Step Up	Step Down		
31500			6.6		20	111	0.45	17	94	0.4				
40000			10.5 21		23	136	0.45	20	114	0.4				
50000	220±2×2.5%		36	36	36		27	161	0.4	24	136	0.34	HV-MV	HV-MV
63000	230±2×2.5%	115	37 38.5	YNa0d11	32	190	0.4	28	162	0.34	12-14	8-10		
90000	242±2×2.5%	121	00.0		40	262	0.34	36	222	0.28	HV-LV	HV-LV		
120000			10.5 13.8		49	323	0.34	44	273	0.28	8-12	28-34		
150000			15.75 18		58	384	0.28	52	324	0.26	MV-LV	MV-LV		
180000			21 36		67	439	0.28	60	367	0.26	14–18	18-24		
240000			37 38.5		79	545	0.16	71	478	0.2				

Note:

1. The capacity allocation of step-up structure is (100 / 50 / 100)%, and that of step-down structure is (100 / 100 / 50)%;

2. The short circuit impedance in the table is 100% of the rated capacity;

3. Ttransformer with low voltage of 35kV can also be provided on request;

4. The non tapping structure is preferred, and taps can be set if required;

5. When the annual load rate of transformer is about 40%, the highest operation efficiency can be obtained by using the loss value in the table.

1. Active Part 2. MV Bushing 3. MV Neutral Bushing 4. HV Bushing

5. Oil Conservator 6. LV Bushing 7. Radiator (air cooler) 8. Control Cabinet

Rated	Volt and	age combir I tapping rai	nation nge				Nalaad	Capacity	
Capacity	HV	MV	LV	Vector Group	No load Loss (KW)	Load Loss (KW)	No load Current (%)	Allocation	Impedance(%)
(kVA)	(kV)	(kV)	(kV)	Group			(%)	(%)	
31500			6.3 6.6		23.0	138	0.63		
40000	220±		10.5		27.0	165	0.60		HV-MV
50000	8×1.25%	69	21 36 37		31.0	194	0.60		12~14
63000		115	38.5		36.0	231	0.55	100/100/100	
90000	230±	121	10.5	YNyn0d11	47.0	300	0.44	100/50/100	
120000	8×1.25%		21 36 37		60.0	369	0.44	100/100/50	MV-LV
150000			37 38,5		70.0	438	0.39		7~9
180000			30.0		81.0	538	0.39		
240000	1				100	667	0.35	1	

Note:

1. The data listed in the table are applicable to step-down structure products, and step-up structure products can also be provided as required;

2. transformer with 35kV low voltage can also be provided according to requirements; 3. When the annual load rate of transformer is between 45% and 50%, the highest operation efficiency can be obtained by using the loss value in the table.

1. Active Part	4. MV
2. HV Neutral Bushing	5. HV
3. MV Neutral Bushing	6. Oil (

Technical Parameter

SSZ20-220kV 31500kVA-240000kVA three phase three winding OLTC power transformer (secondary energy efficiency)

Bushing Bushing Conservator

7. LV Bushing 8. Radiator (air cooler) 9. Control Cabinet

OSSZ20-220kV 31500kVA-240000kVA three phase three winding OLTC autotransformer (secondary energy efficiency)

Rated	Vol	tage combinati d tapping range	ion e	Vector	No load	Load Loss	No load	Capacity	
Capacity	HV	MV	LV	Group	Loss	(KW)	Current	Allocation	Impedance(%)
(kVA)	(kV)	(kV)	(kV)	Group	(KW)	(1(\v))	(%)	(%)	
31500	_		6.3 6.6		13.0	92	0.44		
40000			10.5 21		16.0	113	0.44		HV-MV
50000			36		18.0	134	0.39	100/100/50	8 [~] 11 HV-LV 28 [~] 34 MV-LV
63000	220±8×1.25%	115	38.5		21.0	161	0.39		
90000	230±8×1.25%	121	10.5	YNa0d11	26.0	211	0.33		
120000			21		33.0	263	0.33		18~24
150000			36 37		39.0	311	0.28		
180000			38.5		44.0	358	0.28		
240000					54.0	462	0.24		

Note:

1. The data listed in the table are applicable to the products with reduced pressure structure;

2. Transformer with 35kV low voltage can also be provided according to requirements;

3. When the annual load rate of transformer is between 40% and 45%, the highest operation efficiency can be obtained by using the loss value in the table.

Active Part
 MV Bushing
 MV Neutral Bushing
 HV Bushing

5. Oil Conservator
 6. LV Bushing
 7. Radiator (air cooler)
 8. Control Cabinet

SS20-220kV 31500kVA-300000kVA three phase three winding non excitation voltage regulating power transformer (secondary energy efficiency)

Rated		ge combination apping range		Vector			No load	Impeda	ance(%)
Capacity (kVA)	HV (kV)	MV (kV)	LV (kV)	Group	No load Loss (KW)	Load Loss (KW)	Current (%)	Step Up	Step Down
31500			6.3 6.6		21.0	138	0.56		
40000			10.5 21		25.0	165	0.50		
50000	220±2*		36 37		29.0	194	0.44	HV-MV	HV-MV
63000	2.5%	<u> </u>	38.5	-	34.0	231	0.44	22~24 HV-LV	12~14
90000	$230\pm 2^{*}$	69 115	10.5 13.8 21 36 37	YNyn0d11	44.0	300	0.39		MV-LV
120000	2.5% $242\pm2^*$	121	36 37 38.5		55.0	369	0.39	12~14 MV-LV	22~24 MV-LV
150000	24212		10.5 13.8		65.0	438	0.33	7~9	7~9
180000	_		15.75 21		73.0	500	0.33		
240000			36 37		91.0	616	0.28		
300000			38.5		108	726	0.24		

Note:

in the table.

the capacity distribution of the load in the table is (100/100/100)%; The capacity distribution of the step up structure can be (100/50/100)%; The capacity distribution of the step-down structure can be (100/100/50)%, or (100/50/100).
 transformers with rated capacity less than 31500kv.a and other voltage combinations can also be provided as required;
 transformers with low voltage of 35kV can also be provided;
 the non tap structure is preferred. If required by operation, tap can be set;
 when the average load rate of transformer is about 45%, the maximum operating efficiency can be obtained by using the loss value

1. Active Part	4. N
2. HV Neutral Bushing	5. H
3. MV Neutral Bushing	6. C

Technical Parameter

MV Bushing HV Bushing Oil Conservator 7. LV Bushing
 8. Radiator (air cooler)
 9. Control Cabinet

S20-220kV 31500kVA~420000kVA three phase double winding non excitation voltage regulating power transformer (secondary energy efficiency)

Rated	Voltage co and tapp	ombination bing range	Vector			No load	
Capacity (kVA)	HV (kV)	LV (kV)	Group	No load Loss (KW)	Load Loss (KW)	Current (%)	Impedance(%)
31500				18.0	115	0.56	
40000		6.3 6.6		21.0	134	0.56	
50000		10.5		25.0	161	0.52	_
63000	_	10.5 13.8		30.0	188	0.52	
75000	_			34.0	213	0.48	
90000					40.0	246	0.44
120000	$220 \pm 2 \times 2.5\%$		YNd11	49.0	304	0.44	
150000	$242 \pm 2 \times 2.5\%$	10.5		58.0	360	0.40	12~14
160000		13.8 15.75		60.0	378	0.39	
180000		18		66.0	413	0.36	
240000	_	20		83.0	484	0.33	
300000	_			98.0	577	0.30	
360000	_	15.75 18 20		112	662	0.30	
370000				114	675	0.30	
400000				122	716	0.28	
420000				125	742	0.28	

1. Active Part 2. HV Neutral Bushing 6. Radiator (air cooler) 3. HV Bushing 4. Oil Conservator

Note:

1. Transformers with rated capacity less than 31500kVA and other voltage combinations can also be provided according to requirements;

2. transformer with low voltage of 35kV can also be provided according to requirements;

3. The non tapping structure is preferred, and taps can be set if required;

4. When the annual average load rate of transformer is between 45% and 50%, the highest operation efficiency can be obtained by using the loss value in the table.

Technical Parameter

- 5. LV Bushing
- 7. Control Cabinet

S20-220kV 31500kVA~240000kVA three phase double winding low voltage of 66kVnon excitation voltage regulating power transformer (secondary energy efficiency)

Rated	Voltage cor and tapping	nbination g range			T 1 T	No load	
Capacity (kVA)	HV (kV)	LV (kV)	Vector Group	No load Loss (KW)	Load Loss (KW)	Current (%)	Impedance(%)
31500				20.0	129	0.71	
40000				23.0	150	0.71	
50000	_			27.0	180	0.65	
63000		63	YNd11	33.0	211	0.65	
90000	$220 \pm 2 \times 2.5\%$ $230 \pm 2 \times 2.5\%$	66		43.0	275	0.60	12~14
120000	$250 \pm 2 \land 2.5 \%$	69		53.0	330	0.60	
150000				63.0	387	0.54	
180000				72.0	438	0.54	
240000				88.0	543	0.48	

Note:

1. The no-load tap structure is preferred, and the tap can be set if the operation requires;

2. When the annual average efficiency of transformer is between 45% and 50%, the highest operation efficiency can be obtained by using the loss value in the table.

1. Active Part 2. HV Neutral Bushing 3. HV Bushing 4. Oil Conservator

5. LV Bushing 6. Radiator (air cooler) 7. Control Cabinet

SZ20-220kV 31500kVA-240000kVA three phase double winding OLTC power transformer (secondary energy efficiency)

	Voltage co	ombination					
Rated Capacity (kVA)	HV (kV)	ng range LV (kV)	- Vector Group	No load Loss (KW)	Load Loss (KW)	No load Current (%)	Impedance(%)
31500		6.3		20.0	115	0.57	
40000		6.6 10.5		23.0	134	0.57	
50000		21		28.0	161	0.53	
63000	$220 \pm 8 \times 1.25$	36 37		33.0	188	0.53	
90000	$\frac{\%}{230\pm8\times1.25}$	38.5		42.0	246	0.45	
120000	%	10.5	YNd11	51.0	304	0.45	12~14
150000		21 36		60.0	360	0.41	
180000		37 38.5		70.0	413	0.38	
120000			_	53.0	303	0.45	
150000		66		62.0	355	0.43	
180000		69		73.0	406	0.38	
240000				91.0	504	0.30	

Note:

1. 35kV transformer with low voltage can also be provided according to requirements; 2. When the annual average load rate of transformer is about 50%, the highest operation efficiency can be obtained by using the loss value in the table.

1. Active Part 2. HV Neutral Bushing 3. HV Bushing

4. Oil Conservator

Technical Parameter

5. LV Bushing

6. Radiator (air cooler)

7. Control Cabinet

SSZ22-220kV 31500kVA-240000kVA three phase three winding OLTC power transformer (primary energy efficiency)

Rated	Vai	oltage combir nd tapping ran	nation ge				No load		
Capacity (kVA)	HV (kV)	MV (kV)	LV (kV)	Vector Group	No load Loss (KW)	Load Loss (KW)	Current (%)	Capacity Allocation(%)	Impedance(%)
31500			6.3 6.6		19.0	138	0.52		
40000			10.5 21		23.0	165	0.51		HV-MV
50000	220 ± 8		36		26.0	194	0.5		12~14
63000	×1.25%	69	37 38.5		31.0	231	0.47	100/100/100	HV-LV
90000	230 ± 8	115	10.5	YNyn0d11	40.0	300	0.37	100/50/100	22~24
120000	×1.25%	121	21		51.0	369	0.37	100/100/50	MV-LV
150000	,,,,		36 37		59.0	438	0.33		7~9
180000			38.5		68.0	538	0.33		
240000					85.0	667	0.3		

Note:

1. the data listed in the table are applicable to the products of pressure-reducing structure, and the booster structure products can also be provided as required;

2. transformers with low voltage of 35kV can also be provided as required;

3. when the annual load rate of transformer is between 45% and 50%, the maximum operating efficiency can be obtained by using the loss value in the table.

4. MV Bushing 1. Active Part 2. HV Neutral Bushing 5. HV Bushing 3. MV Neutral Bushing 6. Oil Conservator 7. LV Bushing 8. Radiator (air cooler) 9. Control Cabinet

OSSZ22-220kV 31500kVA~240000kVA three phase three

Rated	Vai	oltage combir nd tapping ran	ation ge				No load		
Capacity (kVA)	HV (kV)	MV (kV)	LV (kV)	Vector Group	No load Loss (KW)	Load Loss (KW)	Current (%)	Capacity Allocation(%)	Impedance(%)
31500			6.3 6.6		11.0	92	0.37		
40000			10.5 21		13.0	113	0.36	_	HV-MV
50000	220±		36 37		15.0	134	0.33		8~11
63000	8×1.25%	115	38.5		18.0	161	0.33	100/100/50	HV-LV
90000	230±	121	10.5	YNa0d11	22.0	211	0.28	100/100/50	28~34
120000	8×1.25%	121	21		28.0	263	0.28		MV-LV
150000			36 37		33.0	311	0.24		18~24
180000			38.5		37.0	358	0.24		10 21
240000					46.0	462	0.2		

Note:

1. The data listed in the table are applicable to the products with reduced pressure structure; 2. transformer with low voltage of 35kV can also be provided according to requirements; 3. When the annual load rate of transformer is between 40% and 45%, the highest operation efficiency can be obtained by using the loss value in the table.

1. Active Part	5.
2. MV Bushing	6.
3. MV Neutral Bushing	7.
4. HV Bushing	8.

Technical Parameter

o winding		autotransformor	(primary	energy efficiency)	
e winuing	OLIC	autotransionnei	(prinary	energy eniciency)	

. Oil Conservator . LV Bushing Radiator (air cooler) . Control Cabinet

SS22-220kV 31500kVA-300000kVA three phase three winding non excitation voltage regulating power transformer (primary energy efficiency)

Rated	a N	/oltage comb nd tapping ra	nation nge		No load Loss	Load Loss	No load	Impeda	nce(%)								
Capacity (kVA)	HV (kV)	MV (kV)	LV (kV)	Vector Group	(KW) (KW)										Current (%)	Step Up	Step Down
31500			6.3 6.6		18.0	138	0.48										
40000			10.5 21		21.0	165	0.42										
50000	220±		36 37		24.0	194	0.36	HV-MV	HV-MV								
63000	2*2.5%		38.5	_	29.0	231	0.38	22~24	12~14								
90000	230±	69 115	10.5 13.8 21	YNyn0d11	37.0	300	0.33	HV-LV	MV-LV								
120000	$2^{*2.5\%}$ 242±	121	10.5 13.8 21 36 37 38.5		46.0	369	0.33	12~14	22~24								
150000	242 -		10.5 13.8		55.0	438	0.28	MV-LV $7 \sim 9$	MV-LV 7~9								
180000			15.75 21		62.0	500	0.28										
240000			36 37		72.0	616	0.22										
300000]		37 38.5		91	726	0.20										

Note:

1. The capacity distribution of the load in the table is (100 / 100 / 100)%; The capacity distribution of boost structure can be (100 / 50 / 100)%; The capacity allocation of Buck structure can be (100 / 100 / 50)% or (100 / 50 / 100)%.

2. Transformers with rated capacity less than 31500kv. A and other voltage combinations can also be provided according to requirements;

3. The transformer with low voltage of 35kV can also be provided;

4. The non tapping structure is preferred, and taps can be set if required; 5. When the annual average load rate of transformer is about 45%, the highest operation efficiency can be obtained by using the loss value in the table.

- 5. HV Bushing 2. HV Neutral Bushing 3. MV Neutral Bushing 6. Oil Conservator
- 7. LV Bushing 8. Radiator (air cooler) 9. Control Cabinet

S22-220kV 31500kVA-420000kVA three phase double winding non excitation voltage regulating power transformer (primary energy efficiency)

	Voltage co	ombination					
Rated Capacity (kVA)	HV (kV)	ng range LV (kV)	Vector Group	No load Loss (KW)	Load Loss (KW)	No load Current (%)	Impedance(%)
31500		(KV)		15.0	115	0.47	
40000	-	6.3		18.0	134	0.48	-
50000		6.6 10.5		21.0	161	0.44	-
63000		1010		25.0	188	0.43	
75000		10.5		29.0	213	0.41	
90000		10.5		34.0	246	0.37	
120000	$220 \pm 2 \times 2.5\%$		_	41.0	304	0.37	_
150000	$242 \pm 2 \times 2.5\%$	10.5	YNd11	49.0	360	0.34	12~14
160000	-	13.8 15.75		51.0	378	0.33	-
180000	-	18		56.0	413	0.31	
240000	-	20	-	70.0	484	0.28	
300000	-			83.0	577	0.25	-
360000		15.75	15.75	95	662	0.25	-
370000	-	18		97	675	0.26	-
400000	-	20		103	716	0.24	-
420000				106	742	0.24	

Note:

1. Transformers with rated capacity less than 31500kVA and other voltage combinations can also be provided according to requirements;

2. Transformer with low voltage of 35kV can also be provided according to requirements; 3. The non tapping structure is preferred, and taps can be set if required; 4. When the annual average load rate of transformer is between 45% and 50%, the highest operation efficiency can be obtained by using the loss value in the table.

Technical Parameter

1. Active Part

- 2. HV Neutral Bushing
- 3. HV Bushing
- 4. Oil Conservator
- 5. LV Bushing
- 6. Radiator (air cooler)
- 7. Control Cabinet

S22-220kV 31500kVA-240000kVA three phase double winding low voltage of 66kV non excitation voltage regulating power transformer (primary energy efficiency)

	Voltage co and tappin	ombination ng range				NT-11	
Rated Capacity (kVA)	HV (kV)	LV (kV)	Vector Group	No load Loss (KW)	Load Loss (KW)	No load Current (%)	Impedance(%)
31500				17.0	129	0.60	
40000				20.0	150	0.62	
50000	-			23.0	180	0.55	-
63000	$220\pm2\times2.5\%$	63		28.0	211	0.55	-
90000	$220 \pm 2 \times 2.5\%$ $230 \pm 2 \times 2.5\%$	66	YNd11	36.0	275	0.50	12-14
120000		69		45.0	330	0.51	
150000				53.0	387	0.45	
180000				61.0	438	0.46	-
240000				75.0	543	0.41	

Note:

1. The no-load tap structure is preferred, and the tap can be set if the operation requires;

2. When the annual average efficiency of transformer is between 45% and 50%, the highest operation efficiency can be obtained by using the loss value in the table.

1. Active Part 2. HV Neutral Bushing 3. HV Bushing 4. Oil Conservator

5. LV Bushing 6. Radiator (air cooler) 7. Control Cabinet

			-		-		
Rated Capacity (kVA)	HV (kV)	ing range LV (kV)	Vector Group	No load Loss (KW)	Load Loss (KW)	No load Current (%)	Impedance(%)
31500		6.3		20.0	115	0.48	
40000		6.6 10.5		23.0	134	0.5	
50000		21		28.0	161	0.45	
63000		36 37		33.0	188	0.45	
90000	$220 \pm 8 \times 1.25\%$	38.5		42.0	246	0.38	
120000	$230 \pm 8 \times 1.25\%$	10.5	YNd11	51.0	304	0.38	$12 \sim 14$
150000		21 36		60.0	360	0.35	
180000		37 38.5		70.0	413	0.32	
120000				53.0	303	0.38	
150000		66		62.0	355	0.37	
180000		69		73.0	406	0.32	
240000				91.0	504	0.25	

Note:

1. Transformer with low voltage of 35kV can also be provided according to requirements; 2. When the annual average load rate of transformer is about 50%, the highest operation efficiency can be obtained by using the loss value in the table.

1. Active Part 2. HV Neutral Bushing 3. HV Bushing 4. Oil Conservator

Technical Parameter

SZ22-220kV 31500kVA~240000kVA three phase double winding OLTC power transformer (primary energy efficiency)

5. LV Bushing

6. Radiator (air cooler)

7. Control Cabinet

SSZ18-220kV 31500kVA-240000kVA three phase three winding OLTC power transformer (energy efficiency three)

Rated	Rated Voltage combination and tapping range			Verter		T 1 T	No load	Capacity		
Capacity (kVA)	HV (kV)	MV (kV)	LV (kV)	Vector Group	No load Loss (KW)	(KW)	Current (%)	Allocation(%)	Impedance(%)	
31500	_		6.3 6.6		28.0	145	0.77	_		
40000			10.5 21		33.0	174	0.73		HV-MV	
50000	220±	69	36 37		38.0	205	0.74	100/100/100	12~14	
63000	8×1.25%	115	38.5	YNyn0d11	45.0	244	0.69	- 100/100/100 - 100/50/100 - 100/100/50	HV-LV	
90000	230±	121	10 -	livynouri	58.0	316	0.54		22~24	
120000	8×1.25%		10.5 21		74.0	390	0.54	100/100/50	MV-LV	
150000			36		86.0	463	0.48		7~9	
180000			37		99.0	568	0.48			
240000			38.5		123	704	0.43			

Note:

1. The data listed in the table are applicable to step-down structure products, and step-up structure products can also be provided as required;

2. Transformer with low voltage of 35kV can also be provided according to requirements;

3. When the annual load rate of transformer is between 45% and 50%, the highest operation efficiency can be obtained by using the loss value in the table.

1. Active Part4. MV Bushing7. LV2. HV Neutral Bushing5. HV Bushing8. R3. MV Neutral Bushing6. Oil Conservator9. C

7. LV Bushing
 8. Radiator (air cooler)
 9. Control Cabinet

OSSZ18-220kV 31500kVA-240000kVA three phase three winding OLTC autotransformer (energy efficiency three)

		Voltage con and tapping		-				No load		
Rated Capa (kVA)		HV (kV)	MV (kV)	LV (kV)	Vector Group	No load Loss (KW)	Load Loss (KW)	Current (%)	Capacity Allocation(%)	Impedance(%)
315	500			6.3 6.6		16.0	97	0.54		
400	000			10.5		19.0	119	0.52		HV-MV
500	000	220±		21 36		22.0	142	0.48		8~11
630	000	$8 \times 1.25\%$	115	37 38.5		26.0	170	0.48	100/100/50	HV-LV
900	000	230±	121		YNa0d11	32.0	222	0.41		28~34
120	0000	8×1.25%		10.5 21		41.0	277	0.41		MV-LV
150	0000			36		48.0	329	0.34		18~24
180	0000			37		54.0	378	0.34		
240	0000			38.5		66.0	487	0.29	1	

Note:

The data listed in the table are applicable to the products with reduced pressure structure;
 Transformer with low voltage of 35kV can also be provided according to requirements;
 When the annual load rate of transformer is between 40% and 45%, the highest operation efficiency can be obtained by using the loss value in the table.

1. Active Part	5. Oil C
2. MV Bushing	6. LV E
3. MV Neutral Bushing	7. Radi
4. HV Bushing	8. Cont

Technical Parameter

Conservator Bushing liator (air cooler) htrol Cabinet

SS18-220kV 31500kVA-300000kVA three phase three winding non excitation voltage regulatingpower transformer (energy efficiency three)

Rated	Vo	ltage combin tapping rar	nation nge			T 1T	No load	Impeda	ance(%)
Capacity (kVA)	HV (kV)	MV (kV)	LV (kV)	Vector Group	No load Loss (KW)	Load Loss (KW)	Current (%)	Step Up	Step Down
31500			6.3 6.6		26.0	1145	0.69		
40000			10.5 21		30.0	174	0.60		
50000	220 ± 2		36 37		35.0	2050	0.53	HV-MV	HV-MV
63000	*2.5%	69	38.5		42.0	244	0.54	22~24	$12 \sim 14$
90000	230 ± 2 *2.5%	115	10.5 13.8 21 36 37 38.5	YNyn0d11	54.0	316	0.48	HV-LV	MV-LV
120000	242 ± 2	121	36 37 38.5		67.0	390	0.48	12~14	22~24
150000	*2.5%		10.5 13.8		80.0	463	0.41	MV-LV $7\sim 9$	MV-LV 7~9
180000	_		15.75 21		90.0	527	0.41		
240000			36		112.0	650	0.34		
300000			37 38.5		133	767	0.30		

Note:

1. The capacity distribution of the load in the table is (100 / 100 / 100)%; The capacity distribution of boost structure can be (100 / 50

/ 100)%; The capacity allocation of Buck structure can be (100 / 100 / 50)% or (100 / 50 / 100)%.

2. Transformers with rated capacity less than 31500kv. A and other voltage combinations can also be provided according to requirements;

3. The transformer with low voltage of 35kV can also be provided;

4. The non tapping structure is preferred, and taps can be set if required; 5. When the annual average load rate of transformer is about 45%, the highest operation efficiency can be obtained by using the loss value in the table.

2. HV Neutral Bushing 5. HV Bushing 3. MV Neutral Bushing 6. Oil Conservator 8. Radiator (air cooler) 9. Control Cabinet

S18-220kV 31500kVA-420000kVA three phase double winding non excitation voltage regulating power transformer (energy efficiency three)

Rated	Voltage comb and tapping r	ange				No load	
Capacity (kVA)	HV (kV)	LV (kV)	Vector Group	No load Loss (KW)	Load Loss (KW)	Current (%)	Impedance(%)
31500		<i>(</i>)		22.0	122	0.68	
40000	-	6.3 6.6		26.0	142	0.69	
50000		10.5		31.0	170	0.64	
63000				37.0	199	0.64	
75000				42.0	225	0.59	
90000	$220 \pm 2 \times 2.5\%$	10.5	YNd11	49.0	259	0.54	12~14
120000		13.8		60.0	321	0.54	
150000	$\begin{array}{c} 220 \pm 2 \times 2.5 \% \\ 242 \pm 2 \times 2.5 \% \end{array}$	10.5		71.0	380	0.49	
160000		13.8		74.0	399	0.48	
180000		15.75 18		82.0	436	0.45	
240000		20		102.0	511	0.41	
300000				121.0	609	0.37	
360000	-	15.75		138	698	0.37	
370000		18		141	713	0.37	
400000		20		150	755	0.34	
420000				154	783	0.34	

Note:

1. Transformers with rated capacity less than 31500kVA and other voltage combinations can also be provided according to requirements;

2. Transformer with low voltage of 35kV can also be provided according to requirements; 3. The non tapping structure is preferred, and taps can be set if required; 4. When the annual average load rate of transformer is between 45% and 50%, the highest operation efficiency can be obtained by using the loss value in the table.

Technical Parameter

- 1. Active Part
- 2. HV Neutral Bushing
- 3. HV Bushing
- 4. Oil Conservator
- 5. LV Bushing
- 6. Radiator (air cooler)
- 7. Control Cabinet

S18-220kV 31500kVA-240000kVA three phase double winding low voltage of 66kV non excitation voltage regulating power transformer (energy efficiency three)

Rated	Voltage combin and tapping rar	nation nge			- 1-	No load	
Capacity (kVA)	HV (kV)	LV (kV)	Vector Group	No load Loss (KW)	Load Loss (KW)	Current (%)	Impedance(%)
31500				24.0	136	0.85	
40000				29.0	159	0.90	_
50000	-			34.0	190	0.82	_
63000		66	YNd11	40.0	222	0.79	12~14
90000	$220 \pm 2 \times 2.5\%$			53.0	291	0.74	
120000	$230 \pm 2 \times 2.5\%$	69		65.0	349	0.74	
150000	-			78.0	409	0.67	_
180000				88.0	463	0.66	_
240000				109.0	573	0.59	

Note:

1. The no-load tap structure is preferred, and the tap can be set if the operation requires;

2. When the annual average efficiency of transformer is between 45% and 50%, the highest operation efficiency can be obtained by using the loss value in the table.

1. Active Part 2. HV Neutral Bushing 3. HV Bushing 4. Oil Conservator

5. LV Bushing 6. Radiator (air cooler) 7. Control Cabinet

SZ18-220kV 31500kVA–240000kVA three phase double winding OLTC power transformer (energy efficiency three)

Rated Capacity (kVA)	Voltage co and tappin HV (kV)	mbination g range LV (kV)	Vector Group	No load Loss (KW)	Load Loss (KW)	No load Current (%)	Impedance(%)
31500	$220 \pm 8 \times 1.25\%$ $230 \pm 8 \times 1.25\%$	6.3	YNd11	24.0	122	0.68	12~14
40000		6.6 10.5		29.0	142	0.7	
50000		21		34.0	170	0.64	
63000		36 37		40.0	199	0.64	
90000		38.5		51.0	259	0.55	
120000		10.5 21		63.0	321	0.56	
150000		36 37		74.0	380	0.51	
180000		38.5		86.0	436	0.47	
120000				65.0	320	0.55	
150000		66		77.0	374	0.53	
180000		69		90.0	428	0.47	
240000				112	532	0.37	

Note:

1. Transformer with low voltage of 35KV can also be provided according to requirements; 2. When the annual average load rate of transformer is about 50%, the highest operation efficiency can be obtained by using the loss value in the table.

1. Active Part 2. HV Neutral Bushing 3. HV Bushing 4. Oil Conservator

Technical Parameter

5. LV Bushing

6. Radiator (air cooler)

7. Control Cabinet